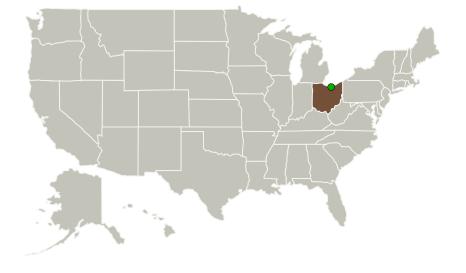
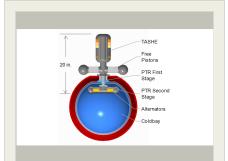
# Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander, Phase I





Completed Technology Project (2013 - 2013)

#### **Project Introduction**

Sierra Lobo proposes to develop a technology that can provide both cooling and electric power generation using heat. When coupled with a radioisotope heat source, the technology is ideally suited to the needs of a long-lived Venus lander. The heat source powers Sierra Lobo's Thermoacoustic Stirling Heat Engine (TASHE), which is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration. A linear alternator, also directly coupled, generates electricity. This configuration reduces the number of energy conversion processes and thus maximizes efficiency. The PTR cools a space called the coldbay that houses the linear alternator and scientific instruments. The only moving parts in the system are free pistons that tune the resonant frequency, which operate at Venus-ambient temperature, and the linear alternators that operate near Earth-ambient temperature. The system can potentially be used with the gas from the atmosphere of Venus, which is primarily composed of CO2, as a working fluid. This provides two key advantages: (1) The system can make the transit to Venus in a low-pressure state, which significantly decreases system mass, and (2) the effect of leakage during operation is minimized, providing confidence in long mission lifetime.

#### **Primary U.S. Work Locations and Key Partners**





Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Images                        | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

## Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander, Phase I



Completed Technology Project (2013 - 2013)

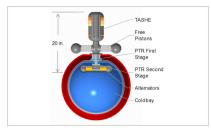
| Organizations<br>Performing Work | Role                       | Туре                                                 | Location           |
|----------------------------------|----------------------------|------------------------------------------------------|--------------------|
| Sierra Lobo Inc.                 | Lead<br>Organization       | Industry<br>Small<br>Disadvantaged<br>Business (SDB) |                    |
| Glenn Research<br>Center(GRC)    | Supporting<br>Organization | NASA Center                                          | Cleveland,<br>Ohio |

#### **Primary U.S. Work Locations**

Ohio

#### **Project Transitions**

May 2013: Project Start




November 2013: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/139899)

#### **Images**



#### **Project Image**

Thermoacoustic Duplex Technology for Cooling and Powering a Venus

(https://techport.nasa.gov/imag e/131941)

# Organizational Responsibility

#### **Responsible Mission Directorate:**

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Sierra Lobo Inc.

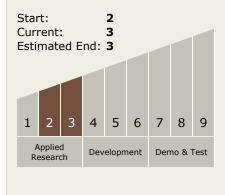
#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler


### Program Manager:

Carlos Torrez

#### **Principal Investigator:**

Mark S Haberbusch

# **Technology Maturity** (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander, Phase I



Completed Technology Project (2013 - 2013)

## **Technology Areas**

#### **Primary:**

- TX03 Aerospace Power and Energy Storage
  TX03.1 Power Generation and Energy Conversion
  TX03.1.2 Heat Sources
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

